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Transition-metal7*-diene and#®-triene complexes play an  Chart 1
important role in the chemistry of unsaturated hydrocarBans.

contrast, only ong*-1,3-enyne complexX ] has been claimetiand

there have been no examples sffcoordination to conjugated
dienynes i ; Chart 1).

We previously reported thatf{-CsMes)Ru(CHCN)3]X (1-Cp*,

X = OTf, PFK) triggers the room temperature cycloaromatization Scheme 1
of enediynes?) in THF-dg to give ruthenium-arenes3-d, (Scheme

1).3 In addition, a single example was described in whie@p*

mediated the cycloisomerization of dienyféi to arene complex

5.3 Mechanistic considerations for these cycloaromatization reac- R

tions raise a fundamental question as to the feasibility;®f 2 / RT
coordination to conjugated enediynes and dienynes. Investigations \@’ o

into the scope and mechanism of the latter process have now led Flm@ X

to the spectroscopic observation and structural characterization of ~ MeCN"/7\ o\ H
the first #®-dienyne complexes. Mec'\: Cp*

The well-established synthetic utility of CpRu§¢chloroarene) “p
complexes for the preparation of diaryl etHeled us to examine
the reactions ofl with electron-deficient dienyne& (Scheme 2).
When a CD{ solution containings-E (0.013 mmol) andl-Cp
(0.019 mmoly was monitored byH NMR spectroscopy, th@®-
chloroarene compleX-Cp was cleanly formed in 95% yield over
the course of 5 B.There was no direct evidence for the formation Ve
of intermediates. A pronounced stereochemical preference for OQ“

A N\ ;
" I

R
THF-dj D
X

Scheme 2

cycloisomerization was observed when a similar reaction was

carried out with6-Z as the dienyne substrate. Addition DiCp

(0.016 mmol) to a CDGlsolution of 6-Z (0.016 mmol) rapidly
(15 min) led to a mixture of6-E (~15%), 7-Cp (25%), and
unidentified decomposition productsifter 2 h, reaction was
complete and’-Cp had formed in 50% yield.

In an effort to stabilize and observe reactive intermediates, the

reaction of6 with the more electron-rich ruthenium catidrCp*,
was also examined bjH NMR spectroscopy. Once again, the

reaction proved to be sensitive to dienyne stereochemistry. In the

case of6-E, within 20 min, a new species$l -Cp*) was observed
to form in 95% vyield, followed by a slow conversion ®BCp*.
Complexlil -Cp* exhibited informative resonances in thé NMR
spectrum (CDG) at6 1.75 (s, 15H, €3 of Cp*) and 2.17 (s, 1H,
=CHCI). The o 2.17 resonance is shifted 4.1 ppm upfield of the
=CHCI hydrogen resonance férE (6 6.29). In a similar fashion,
6-Z and 1-Cp* were observed to rapidly forniv -Cp* (30%),
followed by a slow conversion t@-Cp* (45% yield), with no
observable formation 08-E. ComplexIV -Cp* exhibited a vinyl
hydrogen singlet ab 4.89 (1H,=CHCI), which is shifted 1.0 ppm
upfield from the corresponding signal f6¢Z. The chemical shift
values for the vinyt-hydrogen resonances bf -Cp* (6 2.2) and

IV -Cp* (4.9) are consistent witanti- andsynhydrogen environ-
ments in any*-diene complex. However, the observation of a singlet
ato 2.0 (~9H, NCCHy) in the 'H NMR spectrum of thel-Cp*/
6-E reaction mixture coincided with the formation lof -Cp* and,
thus, suggested thét -Cp* may indeed be an unprecedentgd
dienyne complex.
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The nature of these unusual transient species was further clarified

by examining the reactions of dieny@&with 1-Cp and 1-Cp*
(Scheme 3). A=70°C, a CDC} solution of1-Cp and8 gave rise
to a new species/, which exhibited resonances in thd NMR
spectrum ab 5.32 (s, 5H, Cp), 3.98 (s, 1H-CHsY", and 0.05 (s,
1H, =CHa"), In addition, acetonitrile hydrogen resonances were
observed ab 2.41 (from1-Cp) and 2.08 (free NCMe). The initially
established 1:1 ratio & (andl) to V remained constant f8 h at
—70 °C. Subsequent warming of the sample-tt0 °C led to the
clean formation oB-Cp within 2 h. In a similar fashion, a60°C
CDCl; solution of 8 and 1-Cp* resulted in nearly quantitative
formation of a new specied,0, which was converted cleanly to
9-Cp* upon warming the sample t610 °C. Complex10 exhibited
diagnostic'H NMR resonances at 1.75 (s, 15H, Cp*), 3.27 (s,

10.1021/ja042272y CCC: $30.25 © 2005 American Chemical Society
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Figure 1. Solid-state molecular structure of the cationl6f Ellipsoids at

the 30% probability level. Selected bond lengths (A) and bond angles
(deg): C(1)-C(2) 1.399(5), C(2yC(3) 1.431(4), C(3yC(4) 1.431(4),
C(4)—-C(5) 1.416(4), C(5)C(6) 1.237(5), C(6)C(7) 1.477(5), C(7-C(8)
1.504(6), C(1)-C(2)—C(3) 122.2(3), C(2yC(3)—C(4) 126.0(3), C(3y
C(4)—C(5) 122.5(3), C(1}yRu—C(6) 100.55(13), C(tyRu—C(5) 79.50-
(13).

Scheme 3
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1H,=CH¥"), and 0.11 (s, 1H=CHat), In addition, an acetonitrile
hydrogen resonance was observedda2.07. The significantly
upfield anti-hydrogen chemical shifts observed fér(6 0.05) and
10(0.11) are similar to those observed for Cp*Rupentadienyl)
complexes, such as [Cp*RgfCH,CHCMeCH,)] (11),%2 for
which H" and HY"resonate at 0.38 and 3.88 il respectively.

Ultimately, a crystal oflOwas obtained by layering diethyl ether
on a—78 °C CDC} solution containinglO and cooling the two-
phase mixture at-60 °C for 5 days. The crystal was kept cold
during handling and was subjected to X-ray crystallographic analysis

—173 °C. The structural data confirm thgf-coordination of
ruthenium to all six unsaturated carbon atoms of the dienyne (Figure
1). The alkyne carbons C(5) and C(6) deviat®.153(3) and
—0.143 A, respectively, from the mean plane defined by €(1)
C(6). Ruthenium is located 1.835 A from the centroid of the Cp*
ligand and 1.559 A from the dienyne centroid defined by €(1)
C(6). These values are nearly identical to those observed for Cp*Ru-
(n°-pentadienyl) compled 1 (1.834 and 1.567 A3.

The Ru-C(6) distance of 2.326(4) A is significantly elongated
compared to the rutheniuatarbon distances for C(2)C(5), which

average 2.222 A. The alkyne is bent substantially at both sp-carbons,

with a C(4)-C(5)—C(6) angle of 151.8(3)and a C(5)-C(6)—
C(7) angle of 156.8(4)° The bending of the alkyne at C(5) results
in a C(6)-C(1) nonbonded distance of 2.80 A. H(1A) and H(1B)
deviate from the C(BC(6) plane by —0.05 and+0.37 A,
respectivelyt° The Ru-H(1B) distance of 2.20 A is short enough

to be well within the range of crystallographically characterized
ruthenium agostic €H complexes-12and this short nonbonded
distance is consistent with the chemical shift of H(1B) observed in
the low-temperaturéH NMR spectrum ofL0. For comparison, the
Ru—Ha"i nonbonded distances in a room temperature crystal-
lographic analysis of.1 were 2.67 and 2.86 A and an unsym-
metrically substituted pentadienyl complex has been reported with
a Ru—Ha"i nonbonded distance of 2.12484,

Finally, it should be stressed that althout)d is observed to
convert cleanly to cycloaromatized prod@€Cp* at low temper-
ature, the mechanism for this isomerization has yet to be established,
and 10 may not lie on the direct pathway betwe&mand9.13
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